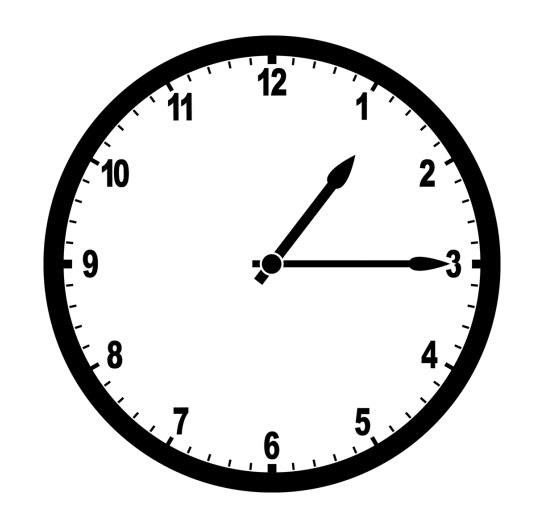
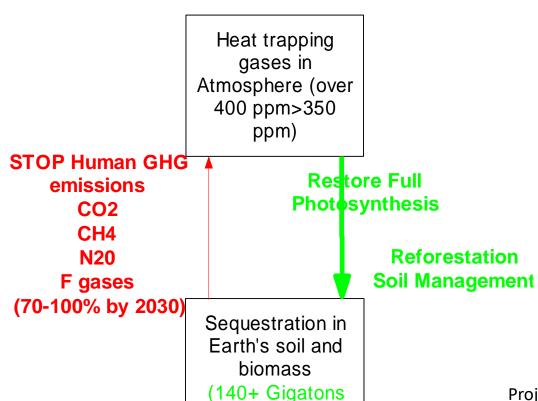
Reduce/Eliminate Parish Emissions


Anna Dengler- All Saints, Park Slope Coty Keller- St. James, Long Beach

_


Creation Care Retreat
October 1, 2022

Agenda

- Review What Needs to Happen
- Problem Solving Framework
- Measuring Emissions
- Energy Audit
- Solar Considerations
- Resources
- Summary, Conclusions
- Q&A, Discussion

Bold Action: What needs to happen

carbon)

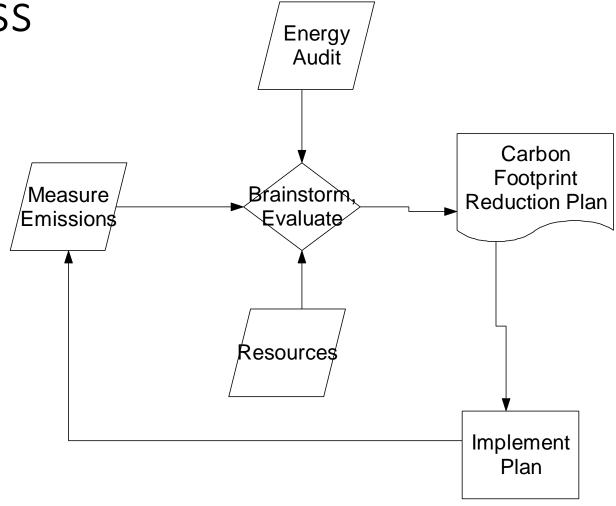
- Reduce Energy Consumption
- Electrify (almost)
 everything, generate
 power from non emitting power sources

Project Drawdown, 2019 climate gap report, 4^h National Climate Assessment, Union of Concerned Scientists, *Solutions*. This Spaceship Earth, Bill Gates *How to Avoid a Climate Disaster*. Omega Institute, U of VT.

Specific action for Parish's to Consider

Reduce Energy Consumption

- Behavior changes
 - Thermostats
 - Lights
- Efficiency measures
 - Insulation and sealing
 - Efficient HVAC/appliances


Electrify (almost) everything, generate power from *non-emitting power* sources

- Fuel switching: i.e. from oil and natural gas to electricity (oil/gas furnace to high efficiency electric heat pump and water heater)
- Generate that electricity from solar (i.e., Community or rooftop solar with batteries)

Project Drawdown, Union of Concerned Scientists, *Solutions*. Bill Gates *How to Avoid a Climate Disaster*. Rewiring America

Parish Decision Process

- Buildings (and transportation)
- Determine footprint- Count 'em up (and keep counting to track progress)
- Energy Audit leads to brainstorming and evaluating alternatives
- Consider resources
- Create plan, commit to it
- Implement
- Count 'em up to gauge success

Try to Include resiliency in the Plan – protect against the worst storms and flooding might bring

Estimating emissions

Why-

- If you don't know the extent of the problem, you don't fully understand it
- If you cannot measure your fossil fuel use, how will you know if you succeeded in reducing/ eliminating them?

How to measure

- 1. Direct: count the energy consumed* and do the math (quantity x emission coefficient = weight of CO2.
- 2. Indirect: input energy data into (free) Energy Star program.
- 3. Farm it out (energy audit)

^{*}Read the meters or use utility bill to get meter readings or monthly amounts consumed

Example: Natural Gas, St. James Long Beach

Annual consumption (therms) x Emission Coefficient = Pounds CO2/year

Therms/yr.	Coefficient	Pounds CO2/year	Tons CO2/year	
2,276	11.71	26,652	13.33	

Carbon Dioxide Emissions Coefficients (USEIA)

Electricity- Calculate the Emission Coefficient from various fuel sources

Electricity		Emission	% PSEG power	Contribution	
from		Coefficient- lbs.		for each kwh	
		CO2 per kwh			
	Wind	0	0.00%	0.00	EPA (GHG Emission
	Solar	0	1.38%	0.00	Factors Hub)
H	Hydro	0	6.97%	0.00	provides emission coefficient estimates
	Biomass	0	7.84%	0.00	for various regions
	Nuclear	0	28.02%	0.00	
	Coal	2.21	0.00%	0.00	
	Natural Gas	0.91	53.94%	0.49	
	Oil	2.13	1.85%	0.04	
			100.00%	0.53	

Example: Electricity, St. James Long Beach

Annual consumption (kWh) x Emission Coefficient = Pounds CO2/year									
kWh/year	Coefficient	Pounds CO2/year		Tons CO2/year					
13,890	0.53	7,365		3.68					

Carbon Dioxide Emissions Coefficients (USEIA)

Transportation?

lbs. CO2 emitted per gallon

Gasoline 19.6

Diesel 22.4

Carbon Dioxide Emissions Coefficients (USEIA)

Estimating building emissions —another option

Energy Star – nice displays

Energy Star Building Emissions Calculator

Data input: (Utility Bills, other sources)

Annual consumption for each fuel type Electricity (grid)

- Electricity (green offsite)
- Electricity (onsite)
- Natural gas
- Oil
- Wood
- Etc.

Output: estimate of annual greenhouse gas emission from your buildings

- Historical,
- Current, and
- Future

https://portfoliomanager.energystar.gov/buildingEmissionsCalculator/

Energy Audit - the first step in identifying opportunities to reduce energy expense and carbon footprint.

- The analysis of building and utility data, including study of the installed equipment and analysis of energy bills;
- The survey of the real operating conditions;
- The understanding of the building behavior and of the interactions with weather, occupancy and operating schedules;
- The selection and the evaluation of energy conservation measures (ECMs)
- The estimation of energy saving potential;
- The identification of customer concerns and needs.

"ASHRAE Audit Procedures"

Example (St. James) Energy Audit Objectives

- 1.Evaluate the current greenhouse gas emissions footprint of the church and rectory.
- 2.Identify opportunities for improvement and assess relative value of each
- 3. Recommend an improvement plan which considers both reduction in carbon emissions and resiliency to weather events, particularly flooding.

"Free" vs. Paid Energy Audit

Free Audit (LI Green Team)

- Sponsored by Utility (PSEG)
- Report format: 2 page slide show of "project proposal" (Energy savings 25 years, Mo cash flow, Project cost net of rebates, Payment summary)
- Solar NO ("Can put you in touch")
- Who does work: Green team companies

EMS Environmental

- \$2,800 cost to parish
- Report format: 40 pages including detailed ECM savings in CO2 emissions, energy bills, estimated investments. (see TOC in handout)
- Solar Yes, in general
- Who does work: we pick contractor(s)

Resources: Metro Industrial Areas Foundation (Metro IAF)

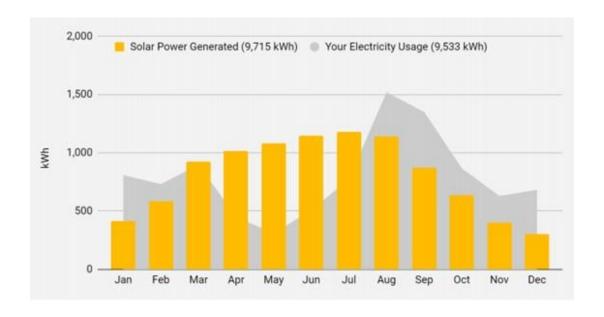
- Community organizing network helping congregations (and other community institutions) to transition off fossil fuel
- Support (subsidies) from NY State New York State Energy Research and Development Authority (NYSERDA)
- Long range plans to decarbonize, plus
 - Implement energy savings HVAC upgrades
 - Cooperative solar development
- Contact: Joe Morris joemorris03@gmail.com 201-705-7988

Resources: Long Island Progressive Coalition (LIPC)

- Solar program for non-profits & houses of worship
- Completed projects: Several Presbytery of LI, 1st Baptist Riverhead, Diocese of LI (Grace, Riverhead)
- Ownership option and no \$ down power purchase power agreement (PPA)
- Contact Ryan Madden <u>rmadden@lipc.org</u> 914-924-3970

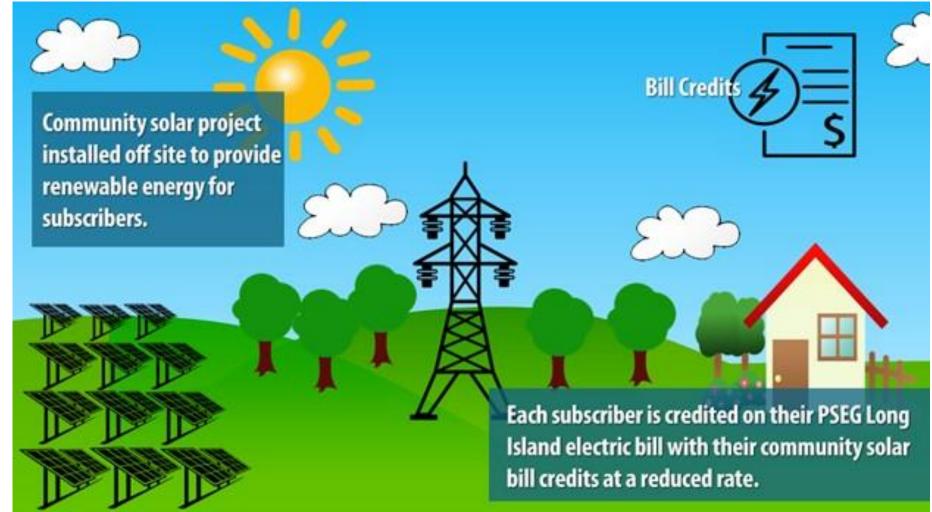
Potential Resource: Energy Star Team

- We are looking for Volunteers (sign up sheet)
- Work with Anna to input (potentially all) parish utility data into Buildings Emissions Calculator


Solar PV — Considerations

When typical solar PV is not producing, the grid is providing you "dirty" electricity. Net zero is not zero emissions

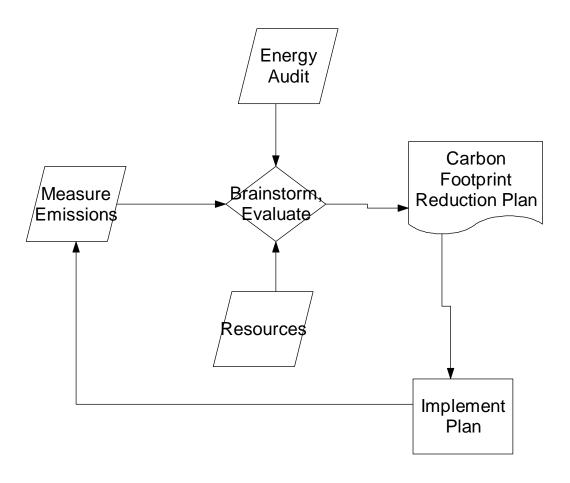
Rx:


- 1. Battery storage
- 2. Green grid

PS: Battery Storage co-benefit: resiliency during power outage

Resonant Energy, LIPC St. James Long Beach

PV panels don't have to be on your property


NYSERDA

Parish Emissions Contacts

- Anna Dengler annadengler@hotmail.com
 914 589-5824
- Coty Keller
 wckeller@earthtlink.net
 941 627-8053

Summary, Conclusions

Keep in mind the goal is to Reduce and then Eliminate Emissions

- Step 1 Measure Emissions
- Step 2 Conduct Energy Audit(s)
 (may include step 1) to Determine
 Alternatives (Behavioral, Systems)
- Put it all Together and Plan
- Keep Measuring Emissions as you
 Put the Plan in Place

Take Aways for Reducing/Eliminating Parish Emissions

- 1.A problem-solving framework (process outline)
- 2. Three ways to measure parish emission; the pros and cons of each
- 3. Why Energy Star could be the preferred method
- 4. Need for, and some limitations of, energy audits.
- 5. Solar electricity considerations
- 6. Sources of help and support resources and contacts

Q&A, Discussion

